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PipeCheck vs PipeProof
▪PipeCheck:

▪PipeProof:

Microarch. spec µarch correct for 
all programs!PipeProof

Auxiliary Inputs

Microarch. spec µarch correct for 
litmus testPipeCheck

Litmus Test



Why do we need PipeProof?
▪Test-based verification only checks that tested programs run correctly!

▪Open question: Does a suite of litmus tests cover all µarch bugs?

▪Example: Remove EnforceWritePPO axiom from simpleSC

• /home/check/pipecheck_tutorial/uarches/SC_fillable.uarch

• Some orderings between same-core stores and loads removed, violating SC

• Will bug be detected? Depends what tests you run!

Axiom "EnforceWritePPO":
forall microop "w",
forall microop "i",
(IsAnyWrite w /\ SameCore w i

/\ EdgeExists((w, Fetch), (i, Fetch), "")) =>
AddEdge ((w, Writeback), (i, Execute)).
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Different tests catch different bugs!

To catch all bugs, must verify across all programs!



Verifying Across All Possible Programs
▪Are all forbidden programs microarchitecturally unobservable?

• If so, then microarchitecture is correct

▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪How are these ISA-level patterns related to litmus tests?
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Symbolic Analysis: Generalise to ISA-Level Cycles

▪Each forbidden litmus test is an instance of an ISA-level cycle

▪PipeProof verifies the ISA-level cycles rather than litmus tests

• Instructions in the ISA-level cycle are symbolic (no concrete addresses/values)

• Verification of ISA-level cycle checks it for all possible addresses/values!

Thread 0 Thread 1

i1: Store [x]  1

i2: Store [y]  1

i3: r1 = Load [y]

i4: r2 = Load [x]

SC Forbids: r1=1, r2=0

mp
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PipeProof: What’s Needed
1. Link ISA-level MCM to microarchitectural specification

• ISA Edge Mapping

2. Add universal constraints that symbolic analysis must respect

• Theory Lemmas

3. A finite representation of all forbidden ISA-level cycles

• Transitive Chain (TC) Abstraction

4. Automated refinement checking of the finite representation

• Microarchitectural Correctness Proof

• Chain invariants (for termination)



Mapping ISA-Level Edges to Microarchitecture
▪Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch

▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po
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Mapping ISA-Level Edges to Microarchitecture
▪Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch
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Blue edges between EX and WB stages added by 
other FIFO axioms (refer to µspec file)



Axiom "Mapping_co":
forall microop "i",
forall microop "j",
(HasDependency co i j => SamePhysicalAddress i j /\

AddEdge ((i, _________), (j, _________), "co_arch")).

Mapping Axioms Hands-on
▪How about mapping 𝑐𝑜 (coherence order) edges?

▪Hint:

• 𝑝𝑜 edge mapping was similar to PO_Fetch axiom

• 𝑐𝑜 edge mapping is based on WriteSerialization axiom

i1 i2

IF

EX

WB

co
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▪Hint:
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• 𝑐𝑜 edge mapping is based on WriteSerialization axiom

Axiom "Mapping_co":
forall microop "i",
forall microop "j",
(HasDependency co i j => SamePhysicalAddress i j /\

AddEdge ((i, Writeback), (j, Writeback), "co_arch")).
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ISA Edge Mappings for SimpleSC
▪Refer to simpleSC_fill.uarch to see mapping axioms for 𝑟𝑓, 𝑓𝑟

i1 i2
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WB

po
i1 i2

IF
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rf
i1 i2
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fr
i1 i2

IF

EX
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Symbolic Analysis Requires Theory Lemmas
▪ Symbolic analysis: predicates are just variables that can be true or false

• “Theory Lemmas” necessary to enforce “universal” laws on predicates

▪Example: Is an instruction guaranteed to be a read or write?

i: r1 = Load [x]

Concrete: Look at instruction -> IsAnyRead i is true
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Symbolic: We now know nothing about the instruction!
Both IsAnyRead i and IsAnyWrite i could be false! (even though this can’t happen in reality)
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Symbolic Analysis Requires Theory Lemmas
▪ Symbolic analysis: predicates are just variables that can be true or false

• “Theory Lemmas” necessary to enforce “universal” laws on predicates

▪Example: Is an instruction guaranteed to be a read or write?

i: r1 = Load [x]

Concrete: Look at instruction -> IsAnyRead i is true

Symbolic: We now know nothing about the instruction!
Both IsAnyRead i and IsAnyWrite i could be false! (even though this can’t happen in reality)

Axiom “Theory_Lemmas":
forall microop "i",
...
IsAnyRead i \/ IsAnyWrite i).

Need Additional Theory Lemma to enforce that op is either a read or write!
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Theory Lemmas: Hands-on
i: Store [x]  1

j: Store [x]  2

k: Store [x]  3
co co

Concrete: Directly compare instructions i and k -> SamePhysicalAddress i k is true
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Verifying Across All Possible Programs
▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪Prove using abstractions and induction

• Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

16



Verifying Across All Possible Programs
▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪Prove using abstractions and induction

• Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

i1

rf

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

co

i2 i4
po

corf
i1 i3

fr

i2 i4
po …

16



All non-unary cycles containing fr
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⟹
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18

Finite!Infinite!



▪Ensure that ISA-level pattern and µarch. support TC Abstraction

▪Base case: Do initial ISA-level edges guarantee connection?

▪ Inductive case: Extend transitive chain => extend transitive connection?

i1 i2
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WB
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i1 in

IF

EX

WB

rn in+1

Some 
Tran 

Conn.

i1 in+1

IF
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Some Transitive 
Connection

Transitive Chain (TC) Abstraction Support Proof

19



PipeProof: What’s Needed
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• ISA Edge Mapping

2. Add universal constraints that symbolic analysis must respect
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• Microarchitectural Correctness Proof

• Chain invariants (for termination)
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Some µhb
edge from 

i1 to in
(transitive 

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may 

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof
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i1 in

IF

EX

WB

fr
?AbsCounterX

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)
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Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

rf
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i1 in

IF

EX

WB

fr
po

…i1 in

IF

EX

WB

fr

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

rf
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p

i1

IF

EX

WB

r

q

in

fr
?AbsCounterX

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

23
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Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable
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✓

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable
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q
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fr
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Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable
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IF
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q
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fr

23

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +



…
p

i1

IF
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r

q

in

fr

p

i1

t

i2

IF

EX
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co

r

q

in

fr

✓ ?

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p

i1

s

in-1

IF

EX

WB

rf

r

q

in

fr

If decomposition is abstract 

counterexample, repeat concretization 

and decomposition!
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Hands-on: Let’s Run PipeProof!

▪What happens?

# Assuming you are in ~/pipeproof_tutorial/uarches/
$ prove_uarch -m simpleSC_fill.uarch -i SC -n



Hands-on: Let’s Run PipeProof!
▪PipeProof does not terminate; why?

...
// Checking Path:  (1/1, fr;)
// Checking Path:  (1/1, fr;) (1/1, po;fr;)
// Checking Path:  (1/1, fr;) (1/1, po;fr;) (1/1, po;po;fr;)
// Checking Path:  (1/1, fr;) (1/1, po;fr;) (1/1, po;po;fr;) (1/1, 
po;po;po;fr;)
...



Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Abstract Counterexample

i1 i3 i4
fr

i5
po
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Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po
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Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

Can continue 
decomposing 

in this way 
forever!
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Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Chain Invariant Applied

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

i1 i4
fr

i2
po_plus

i5

-po_plus = arbitrary 
number of repetitions of po
-Next edge peeled off will 
be something other than po

26



Adding the Chain Invariant for po+
▪Uncomment the invariant at the end of simpleSC_fill.uarch:

▪Now re-run PipeProof:

▪ Should be proven in about a minute on the VM

Axiom "Invariant_poplus":
forall microop "i",
forall microop "j",
HasDependency po_plus i j =>

(AddEdge ((i, Fetch), (j, Fetch), "") /\ SameCore i j).

# Assuming you are in ~/pipeproof_tutorial/uarches/
$ prove_uarch -m simpleSC_fill.uarch -i SC



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

Result: All-Program MCM Correctness Proof?
Counterexample found?

ISA Edge -> 
Microarch. Mapping

Microarch. 
Correctness 

Proof

PassTransitive Chain 
Abstraction 

Support Proof

Generate 
Counterexample

Fail

Chain 
Invariants

Proof of 
Chain Invariants

Fail

Pass

Theory 
Lemmas



PipeProof Does the Difficult Stuff for You!
▪Users simply provide axioms, mappings, theory lemmas, and invariants

▪PipeProof takes care of:

• Proving TC Abstraction soundness

• Proving any chain invariants

• Refining abstraction (concretization and decomposition)

• Inductively generating ISA-level cycles and covering all possibilities

▪Architects can use PipeProof; not just for formal methods experts!



PipeProof: TSO Case Study
▪Provided in VM as solutions/simpleTSO.uarch

• Can try on your own time

• Requires additional ISA-level relations, theory lemmas, and chain invariants

• Will take at least 41 minutes to verify



simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec (≈ 41 mins)

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO1) µarches

• 3-stage in-order pipelines

▪TSO verification made feasible by optimizations

• Explicitly checking all decompositions => case explosion

• Covering Sets Optimization (eliminate redundant transitive connections)

• Memoization (eliminate previously checked ISA-level cycles)

311TSO (Total Store Order) is the MCM of Intel x86 processors. It relaxes Store->Load ordering.



PipeProof Takeaways
▪Automated All-Program Microarchitectural MCM Verification

• Designers no longer need to choose between completeness and automation

• Can verify microarchitectures themselves, before RTL is written!

▪Based on techniques from formal methods (CEGAR) [Clarke et al. CAV 2000]

▪Transitive Chain (TC) Abstraction models infinite set of executions

▪Open-source: https://github.com/ymanerka/pipeproof

▪Accolades:

• Nominated for Best Paper at MICRO 2018

• “Hon. Mention” from 2018 IEEE Micro Top Picks of Comp. Arch. Conferences

https://github.com/ymanerka/pipeproof


Backup Slides



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections
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BA



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections
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Graph A has an edge 
from x→z (tran conn.)



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections
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Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from 
y→z (tran conn.) and 
x→z (by transitivity)

Graph A has an edge 
from x→z (tran conn.)

Correctness of A => Correctness of B (since B contains A’s tran conn.)
Checking B explicitly is redundant!



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1
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Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified
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Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified
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Same cycle is checked 3 times!



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.rf

Procedure: If all ISA-level cycles containing edge ri have been checked, 
do not peel off ri edges when checking subsequent cycles

Same cycle is checked 3 times!



The Adequate Model Over-Approximation
▪Addition of an instruction can make unobservable execution observable!

▪Need to work with over-approximation of microarchitectural constraints

▪PipeProof sets all exists clauses to true as its over-approximation

t

i1 i2

IF

EX

WB

fr

v

i3
co

SubsetExec

u

t

i1 i2

IF

EX

WB

fr

v

i3

SubsetWithExternal

u

i4
rf

co



Filtering Invalid Decompositions
▪When decomposing a transitive connection, the decomposition should 

guarantee the transitive connections of its parent abstract cexes.

▪Decompositions that do not do this are invalid and filtered out

p

i1

r

q

in

IF

EX

WB

fr

?AbsCounterX

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr
Invalid Decomposition
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PipeProof Block Diagram
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If design can’t be verified, a counterexample (a forbidden 
execution that is observable) is often returned
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