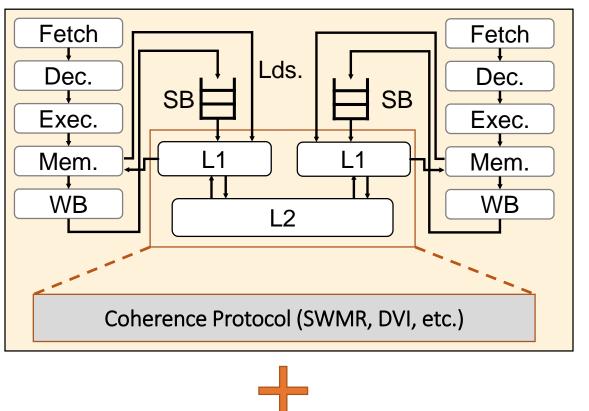
PipeProof (including hands-on):

Verifying simpleSC across all programs

Does hardware correctly implement ISA MCM?

Microarchitecture



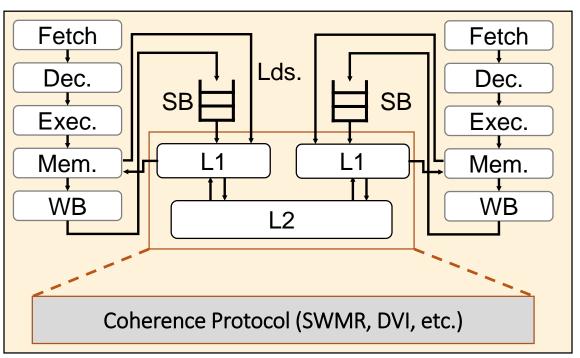
Litmus Test

Core 0	Core 1	
(i1) St [x] $\leftarrow 1$	(i3) Ld r1 \leftarrow [y]	
(i2) St [y] $\leftarrow 1$	(i4) Ld r2 \leftarrow [x]	
Under TSO: Forbid r1=1, r2=0		

SC/TSO/RISC-V MCM? (for the litmus test)

Does hardware correctly implement ISA MCM?

Microarchitecture



PipeCheck vs PipeProof

PipeCheck:

PipeProof:

Why do we need PipeProof?

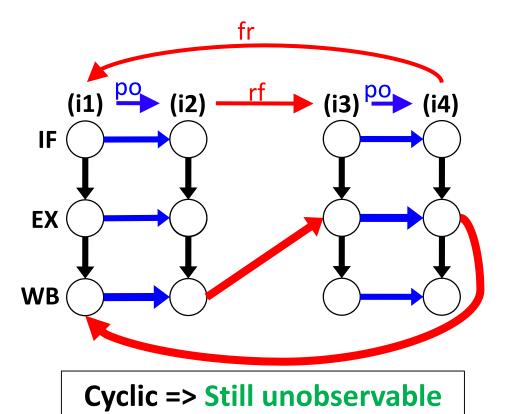
- Test-based verification only checks that tested programs run correctly!
- Open question: Does a suite of litmus tests cover all µarch bugs?
- Example: Remove EnforceWritePPO axiom from simpleSC
 - /home/check/pipecheck_tutorial/uarches/SC_fillable.uarch
 - Some orderings between same-core stores and loads removed, violating SC
 - Will bug be detected? **Depends what tests you run!**

```
Axiom "EnforceWritePPO":
```

forall microop "w",
forall microop "i",
(IsAnyWrite w /\ SameCore w i
 /\ EdgeExists((w, Fetch), (i, Fetch), "")) =>
 AddEdge ((w, Writeback), (i, Execute)).

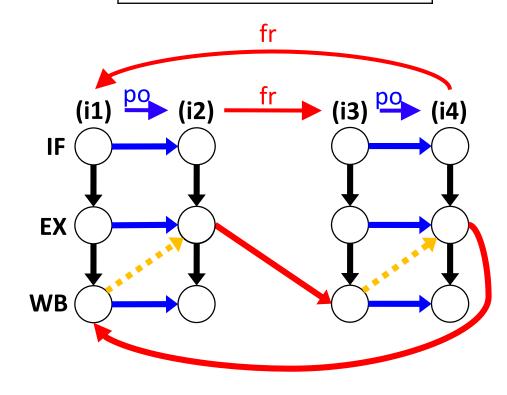
SimpleSC without EnforceWritePPO

mp Litmus Test	
Core 0	Core 1
x = 1;	r1 = y; r2 = x;
y = 1;	$r_{Z} = x;$
Forbid: r1 = 1, r2 = 0	



sb Litmus Test

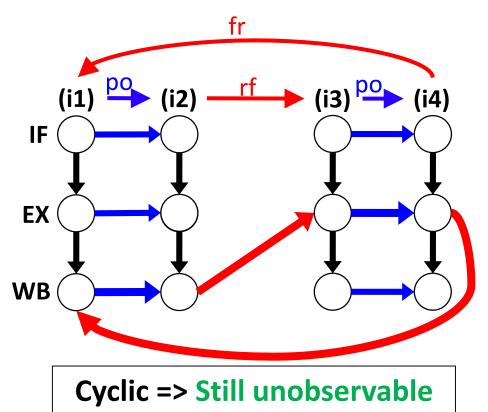
Core 0	Core 1	
x = 1; r1 = y;	y = 1; r2 = x;	
Forbid: r1 = 0, r2 = 0		



5

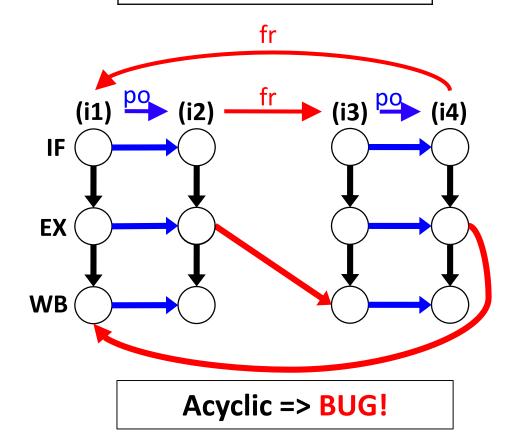
SimpleSC without EnforceWritePPO

mp Litmus Test		
Core 0	Core 1	
x = 1;	r1 = y;	
y = 1;	r2 = x;	
Forbid: r1 = 1, r2 = 0		



sb Litmus Test

Core 0	Core 1
x = 1; r1 = y;	y = 1; r2 = x;
Forbid: $r1 = 0$, $r2 = 0$	

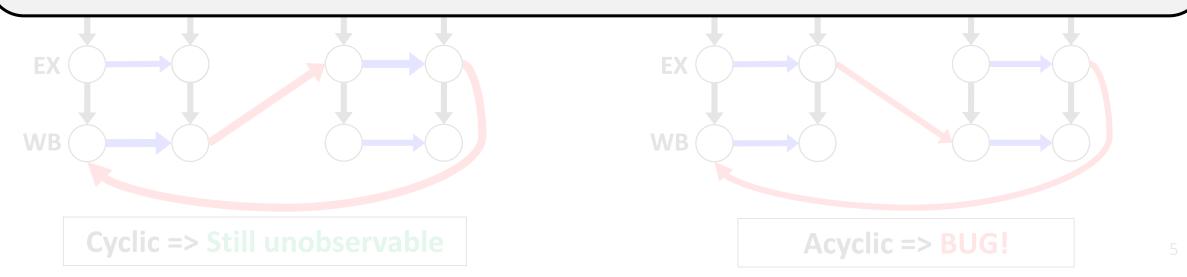


SimpleSC without EnforceWritePPO

mp Litı	mus Test	sb Litn	nus Test
Core 0	Core 1	Core 0	Core 1
x = 1;	r1 = y;	x = 1;	y = 1;
y = 1;	r2 = x;	r1 = y;	r2 = x;

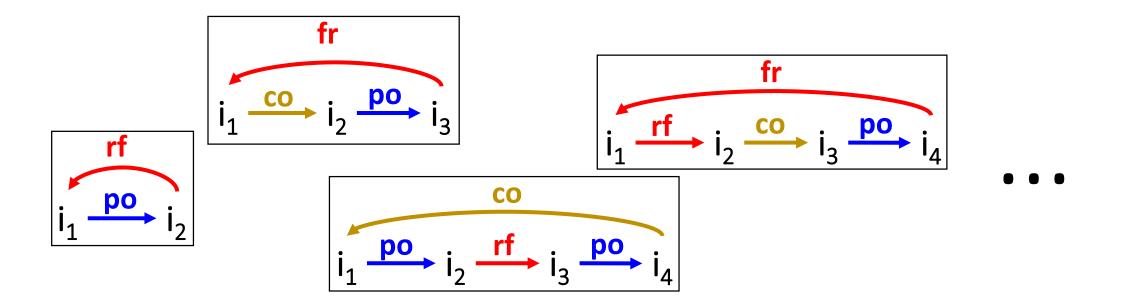
Different tests catch different bugs!

To catch all bugs, must verify across all programs!



Verifying Across All Possible Programs

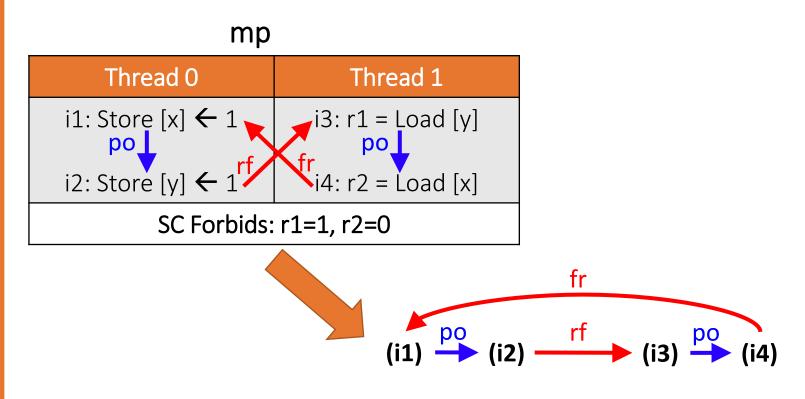
- Are all forbidden programs microarchitecturally unobservable?
 - If so, then microarchitecture is correct
- Infinite number of forbidden programs
 - E.g.: For SC, must check all possibilities of $cyclic(po \cup co \cup rf \cup fr)$
- How are these ISA-level patterns related to litmus tests?



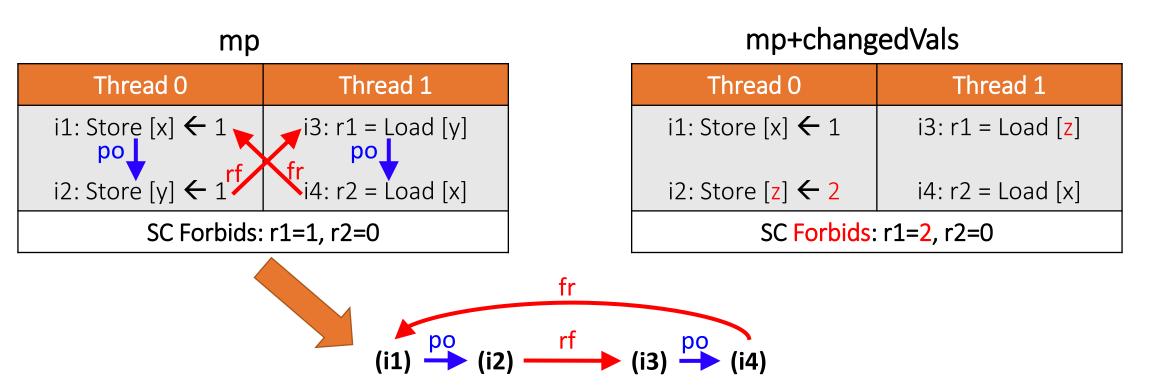
- Each forbidden litmus test is an instance of an ISA-level cycle
- PipeProof verifies the ISA-level cycles rather than litmus tests
 - Instructions in the ISA-level cycle are **symbolic** (no concrete addresses/values)
 - Verification of ISA-level cycle checks it for all possible addresses/values!

mp		
Thread 0	Thread 1	
i1: Store [x] ← 1	i3: r1 = Load [y]	
i2: Store [y] ← 1 i4: r2 = Load [x]		
SC Forbids: r1=1, r2=0		

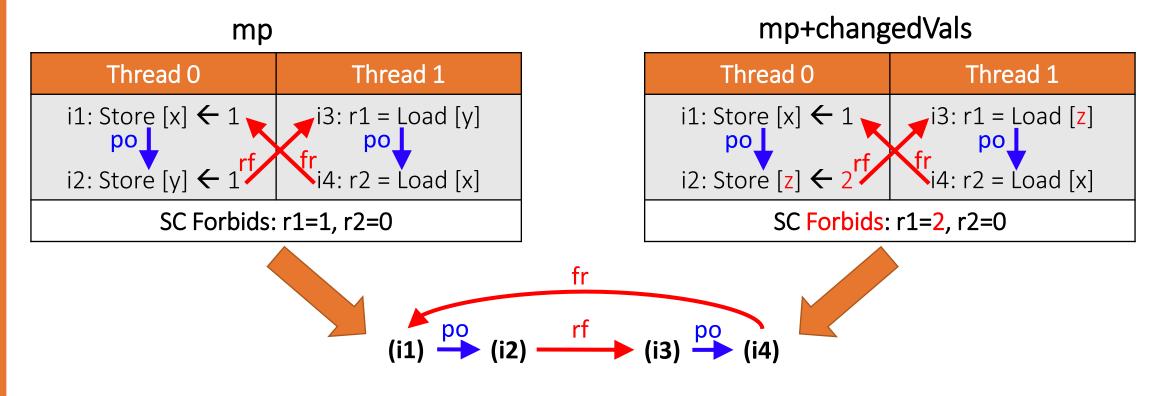
- Each forbidden litmus test is an instance of an ISA-level cycle
- PipeProof verifies the ISA-level cycles rather than litmus tests
 - Instructions in the ISA-level cycle are **symbolic** (no concrete addresses/values)
 - Verification of ISA-level cycle checks it for all possible addresses/values!



- Each forbidden litmus test is an instance of an ISA-level cycle
- PipeProof verifies the ISA-level cycles rather than litmus tests
 - Instructions in the ISA-level cycle are **symbolic** (no concrete addresses/values)
 - Verification of ISA-level cycle checks it for all possible addresses/values!



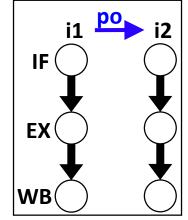
- Each forbidden litmus test is an instance of an ISA-level cycle
- PipeProof verifies the ISA-level cycles rather than litmus tests
 - Instructions in the ISA-level cycle are **symbolic** (no concrete addresses/values)
 - Verification of ISA-level cycle checks it for all possible addresses/values!



PipeProof: What's Needed

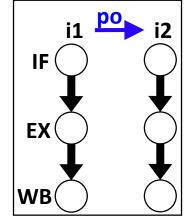
- 1. Link ISA-level MCM to microarchitectural specification
 - ISA Edge Mapping
- 2. Add universal constraints that symbolic analysis must respect
 - Theory Lemmas
- 3. A finite representation of all forbidden ISA-level cycles
 - Transitive Chain (TC) Abstraction
- 4. Automated refinement checking of the finite representation
 - Microarchitectural Correctness Proof
 - Chain invariants (for termination)

- Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch
- Translate each edge in ISA-level cycle to microarchitectural constraints
- Do so with user-provided Mapping Axioms
- Example: Mapping of po edges



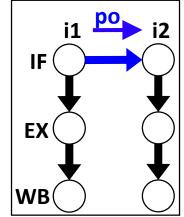
Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>
 AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

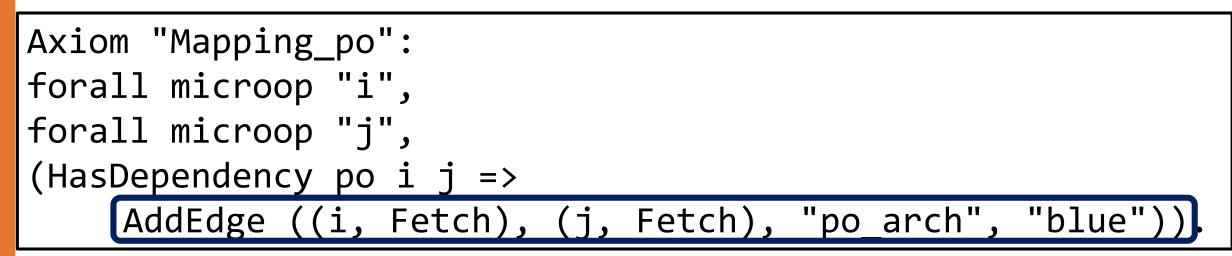
- Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch
- Translate each edge in ISA-level cycle to microarchitectural constraints
- Do so with user-provided Mapping Axioms
- Example: Mapping of po edges



Axiom "Mapping_po": Check whether a po edge
forall microop "i", from i to j exists
forall microop "j",
(HasDependency po i j =>
AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

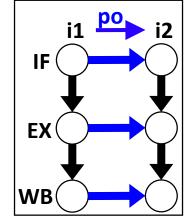
- Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch
- Translate each edge in ISA-level cycle to microarchitectural constraints
- Do so with user-provided Mapping Axioms
- Example: Mapping of po edges

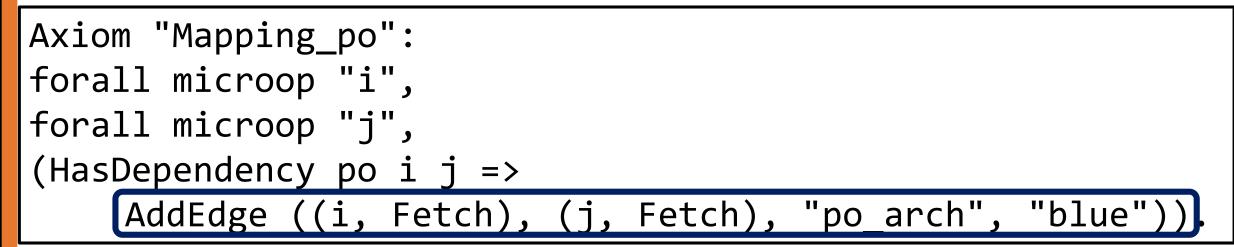




- Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch
- Translate each edge in ISA-level cycle to microarchitectural constraints
- Do so with user-provided Mapping Axioms
- Example: Mapping of po edges

Blue edges between EX and WB stages added by other FIFO axioms (refer to µspec file)



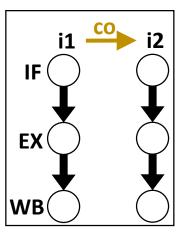


Mapping Axioms Hands-on

How about mapping co (coherence order) edges?

Hint:

- *po* edge mapping was similar to **PO_Fetch** axiom
- co edge mapping is based on WriteSerialization axiom

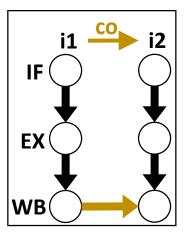


Mapping Axioms Hands-on

How about mapping co (coherence order) edges?

Hint:

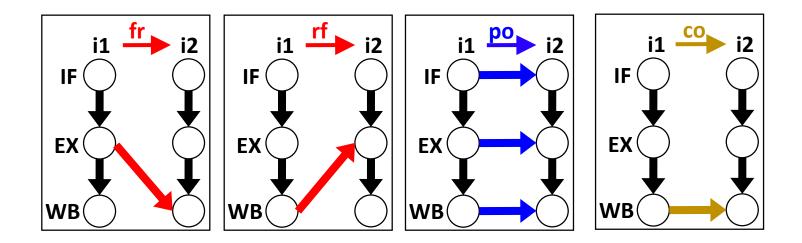
- *po* edge mapping was similar to **PO_Fetch** axiom
- co edge mapping is based on WriteSerialization axiom



Axiom "Mapping_co":
forall microop "i",
forall microop "j",
(HasDependency co i j => SamePhysicalAddress i j /\
 AddEdge ((i, Writeback), (j, Writeback), "co_arch")).

ISA Edge Mappings for SimpleSC

Refer to simpleSC_fill.uarch to see mapping axioms for rf, fr



PipeProof: What's Needed

- 1. Link ISA-level MCM to microarchitectural specification
 - ISA Edge Mapping
- 2. Add universal constraints that symbolic analysis must respect
 - Theory Lemmas
- 3. A finite representation of all forbidden ISA-level cycles
 - Transitive Chain (TC) Abstraction
- 4. Automated refinement checking of the finite representation
 - Microarchitectural Correctness Proof
 - Chain invariants (for termination)

Symbolic Analysis Requires Theory Lemmas

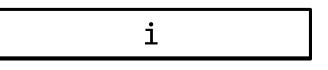
- Symbolic analysis: predicates are just variables that can be true or false
 - "Theory Lemmas" necessary to enforce "universal" laws on predicates
- **Example:** Is an instruction guaranteed to be a read or write?

i: r1 = Load [x]

Concrete: Look at instruction -> IsAnyRead i is true

Symbolic Analysis Requires Theory Lemmas

- Symbolic analysis: predicates are just variables that can be true or false
 - "Theory Lemmas" necessary to enforce "universal" laws on predicates
- **Example:** Is an instruction guaranteed to be a read or write?



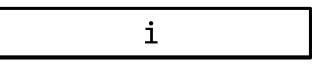
Concrete: Look at instruction -> IsAnyRead i is true

Symbolic: We now know nothing about the instruction!

Both IsAnyRead i and IsAnyWrite i could be false! (even though this can't happen in reality)

Symbolic Analysis Requires Theory Lemmas

- Symbolic analysis: predicates are just variables that can be true or false
 - "Theory Lemmas" necessary to enforce "universal" laws on predicates
- Example: Is an instruction guaranteed to be a read or write?



Concrete: Look at instruction -> IsAnyRead i is true

Symbolic: We now know nothing about the instruction!

Both IsAnyRead i and IsAnyWrite i could be false! (even though this can't happen in reality)

Need Additional Theory Lemma to enforce that op is either a read or write!

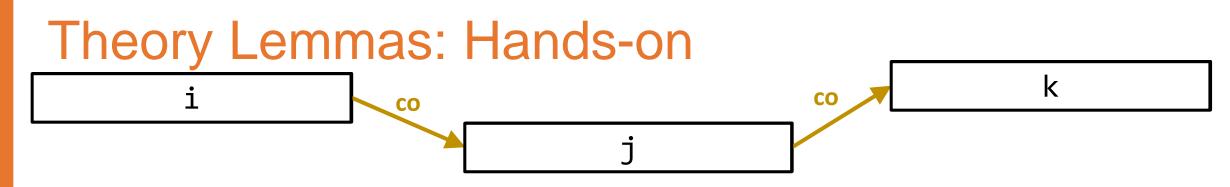
```
Axiom "Theory_Lemmas":
forall microop "i",
```

IsAnyRead i ∖/ IsAnyWrite i)

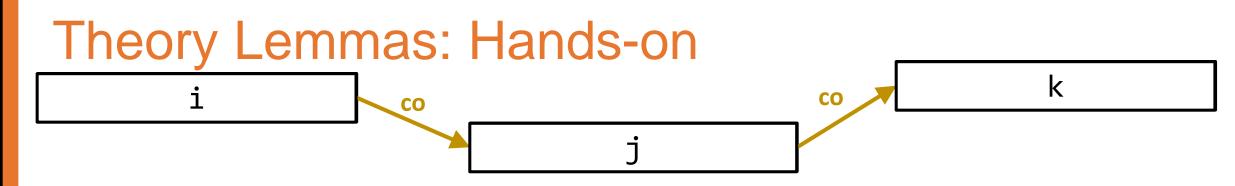
Theory Lemmas: Hands-on
i: Store
$$[x] \leftarrow 1$$

j: Store $[x] \leftarrow 2$
 $k: Store [x] \leftarrow 3$

Concrete: Directly compare instructions i and k -> **SamePhysicalAddress i k is true**



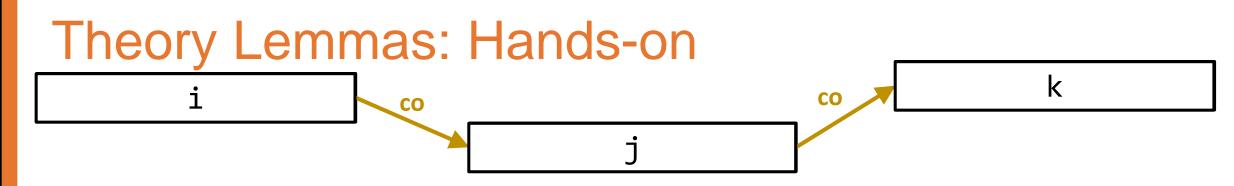
Concrete: Directly compare instructions i and k -> **SamePhysicalAddress i k is true Symbolic:** co edge mapping gives **SamePhysicalAddress i j** and **SamePhysicalAddress j k** But **SamePhysicalAddress i k could be false!** (even though this can never happen in reality)



Concrete: Directly compare instructions i and k -> **SamePhysicalAddress i k is true Symbolic:** co edge mapping gives **SamePhysicalAddress i j** and **SamePhysicalAddress j k** But **SamePhysicalAddress i k could be false!** (even though this can never happen in reality)

Need Additional Theory Lemma for Transitivity of SamePhysicalAddress!

```
Axiom "Theory_Lemmas":
forall microop "i",
...
forall microop "j",
...
forall microop "k",
(SamePhysicalAddress _ _ /\ SamePhysicalAddress _ _ =>
SamePhysicalAddress _ _)...
```



Concrete: Directly compare instructions i and k -> **SamePhysicalAddress i k is true Symbolic:** co edge mapping gives **SamePhysicalAddress i j** and **SamePhysicalAddress j k** But **SamePhysicalAddress i k could be false!** (even though this can never happen in reality)

Need Additional Theory Lemma for Transitivity of SamePhysicalAddress!

```
Axiom "Theory_Lemmas":
forall microop "i",
...
forall microop "j",
...
forall microop "k",
(SamePhysicalAddress i j /\ SamePhysicalAddress j k =>
SamePhysicalAddress i k)...
```

PipeProof: What's Needed

- 1. Link ISA-level MCM to microarchitectural specification
 - ISA Edge Mapping
- 2. Add universal constraints that symbolic analysis must respect
 Theory Lemmas
- 3. A finite representation of all forbidden ISA-level cycles
 - Transitive Chain (TC) Abstraction
- 4. Automated refinement checking of the finite representation
 - Microarchitectural Correctness Proof
 - Chain invariants (for termination)

Verifying Across All Possible Programs

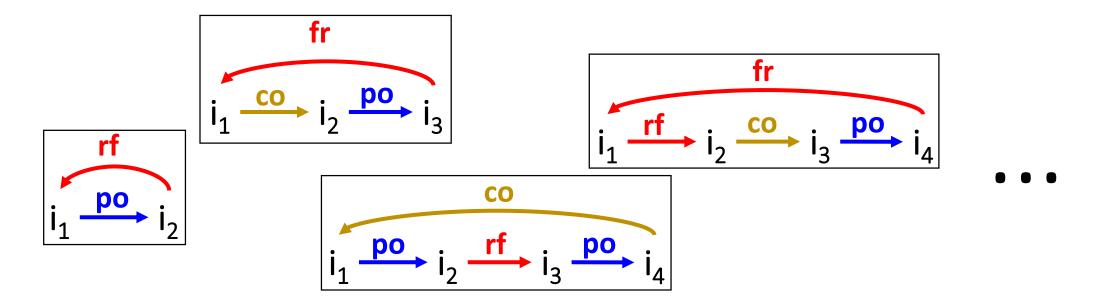
Infinite number of forbidden programs

- E.g.: For SC, must check all possibilities of $cyclic(po \cup co \cup rf \cup fr)$
- Prove using abstractions and induction
 - Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

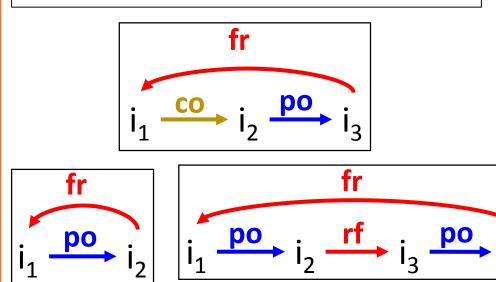
Verifying Across All Possible Programs

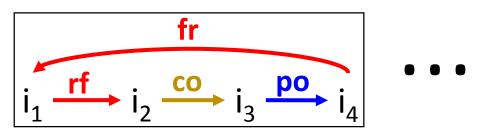
Infinite number of forbidden programs

- E.g.: For SC, must check all possibilities of $cyclic(po \cup co \cup rf \cup fr)$
- Prove using abstractions and induction
 - Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

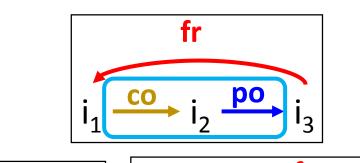


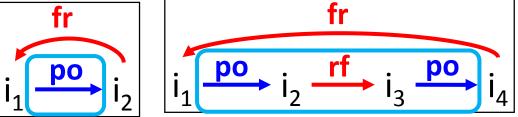
All non-unary cycles containing **fr** (Infinite set)

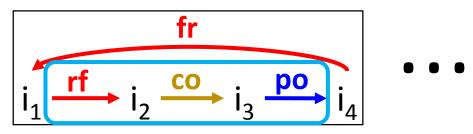




All non-unary cycles containing **fr** (Infinite set)

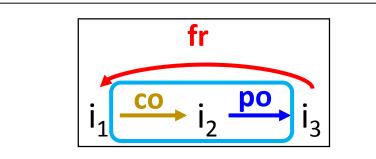


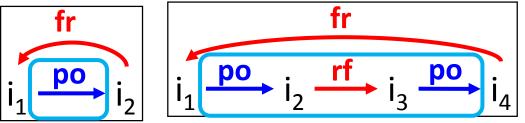


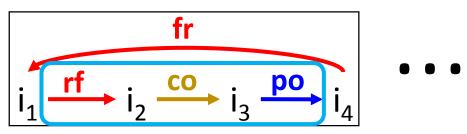


Cycle = Transitive Chain (sequence) + Loopback edge (fr)

All non-unary cycles containing **fr** (Infinite set)

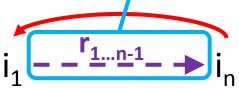




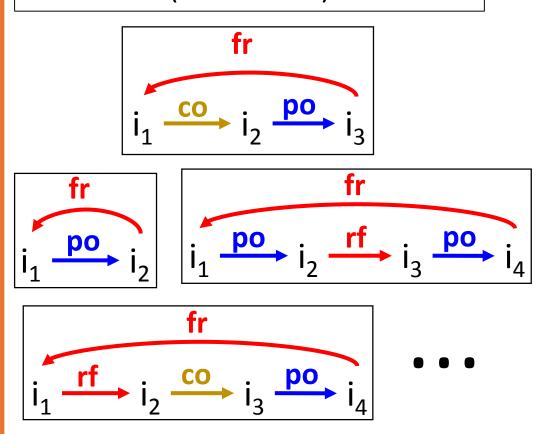


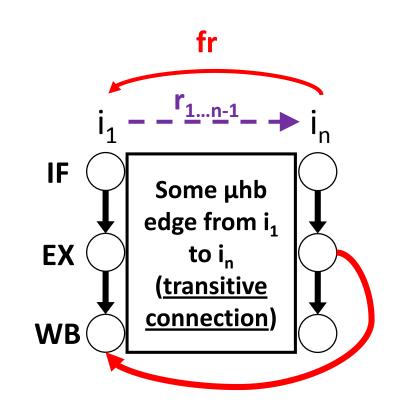
Cycle = Transitive Chain (sequence) + Loopback edge (fr)

Transitive chain (sequence) of ISA-level edges



All non-unary cycles containing **fr** (Infinite set)

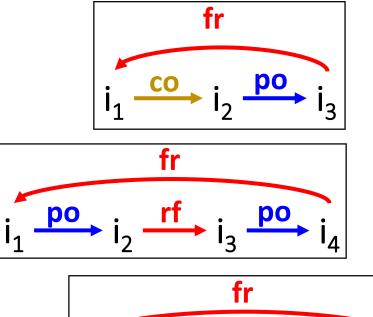


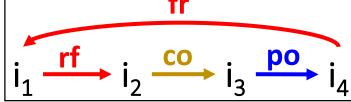


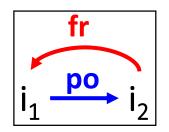
Cycle = Transitive Chain (sequence) + Loopback edge (fr)

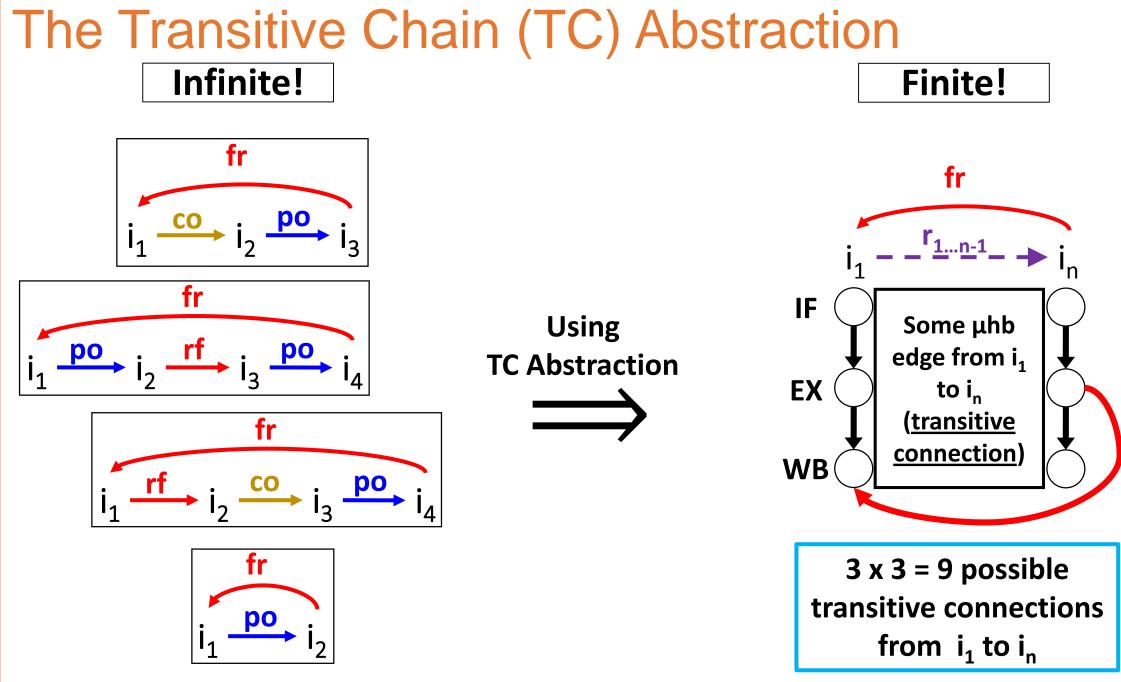
ISA-level **transitive chain =>** Microarch. level **transitive connection**

The Transitive Chain (TC) Abstraction



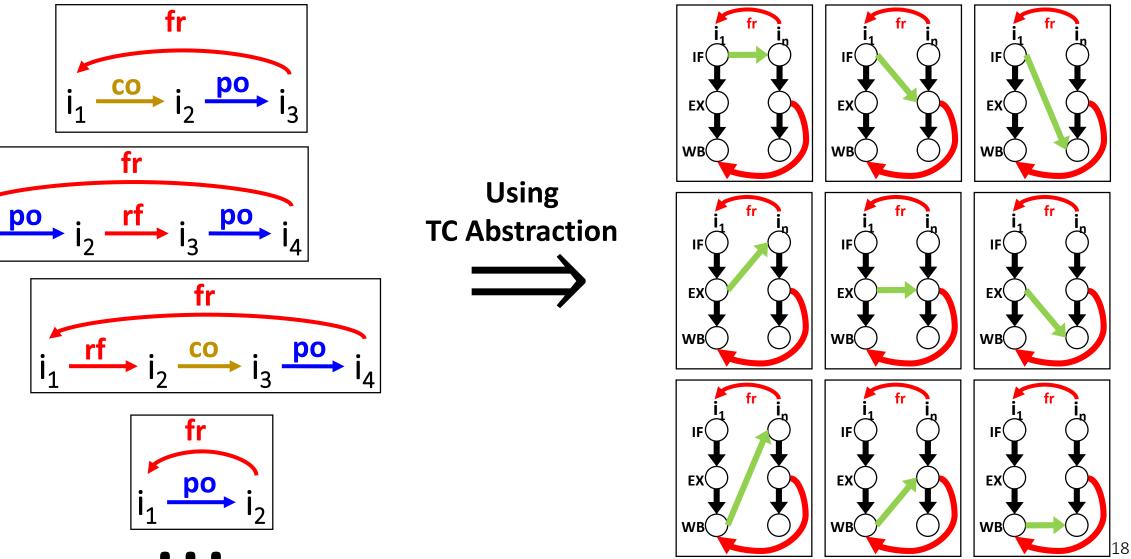






The Transitive Chain (TC) Abstraction

Infinite!

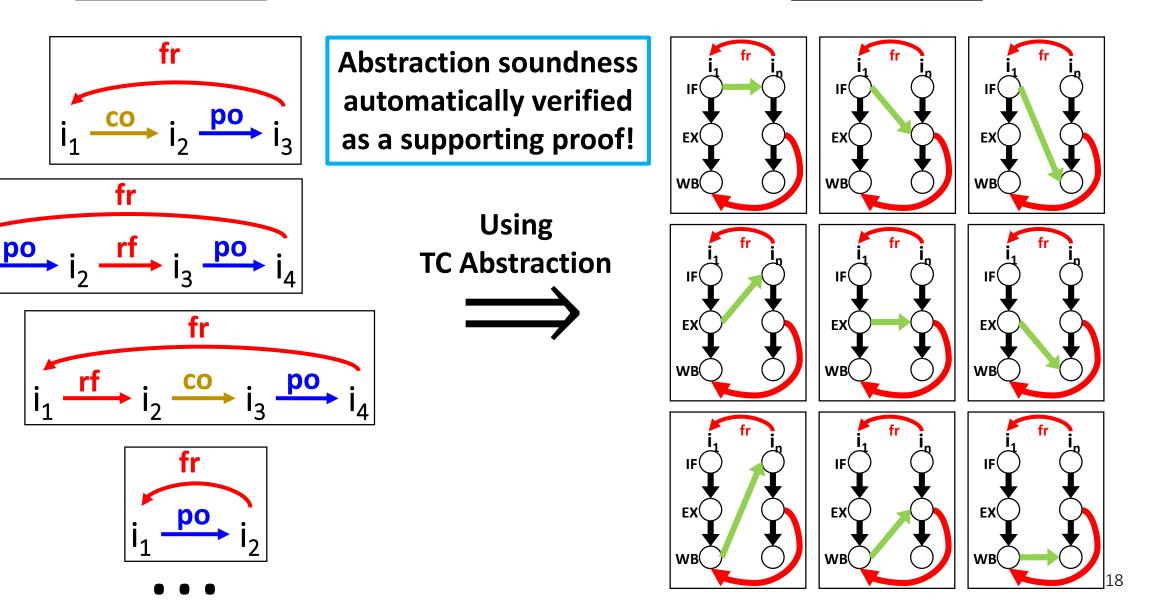


 \mathbf{i}_1

The Transitive Chain (TC) Abstraction

Infinite!

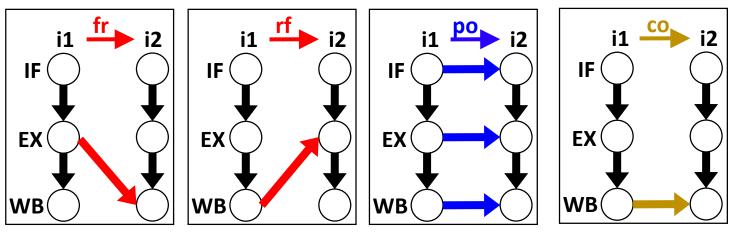
Finite!



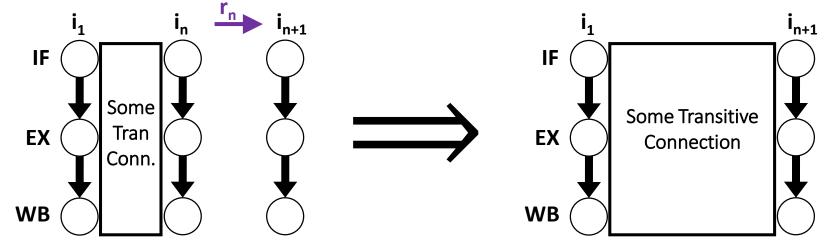
I₁

Transitive Chain (TC) Abstraction Support Proof

- Ensure that ISA-level pattern and µarch. support TC Abstraction
- Base case: Do initial ISA-level edges guarantee connection?

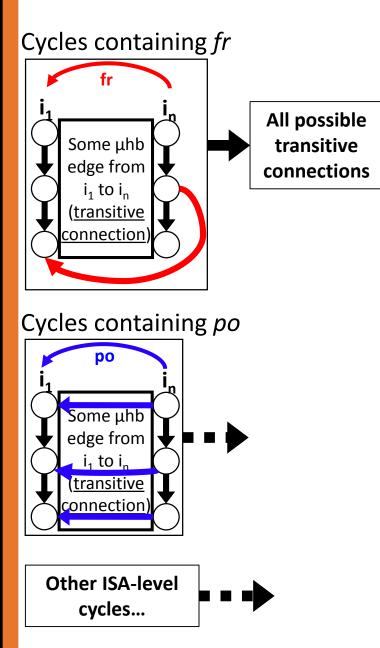


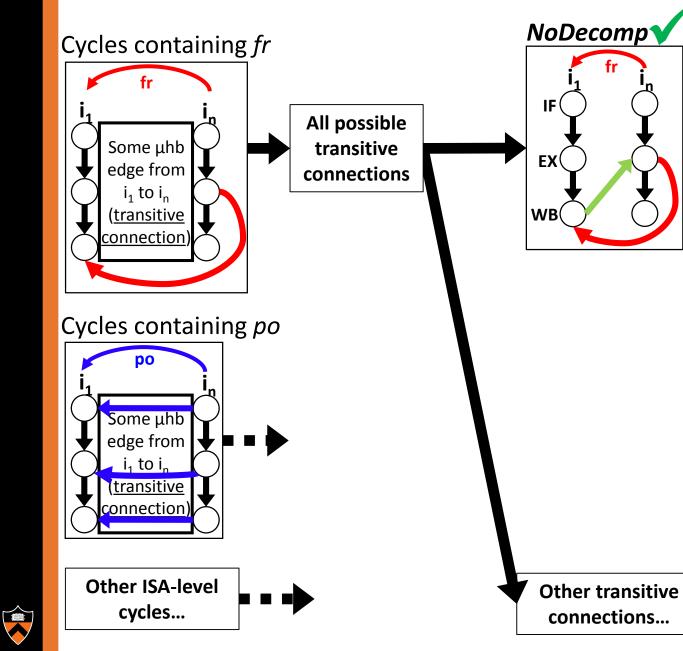
Inductive case: Extend transitive chain => extend transitive connection?

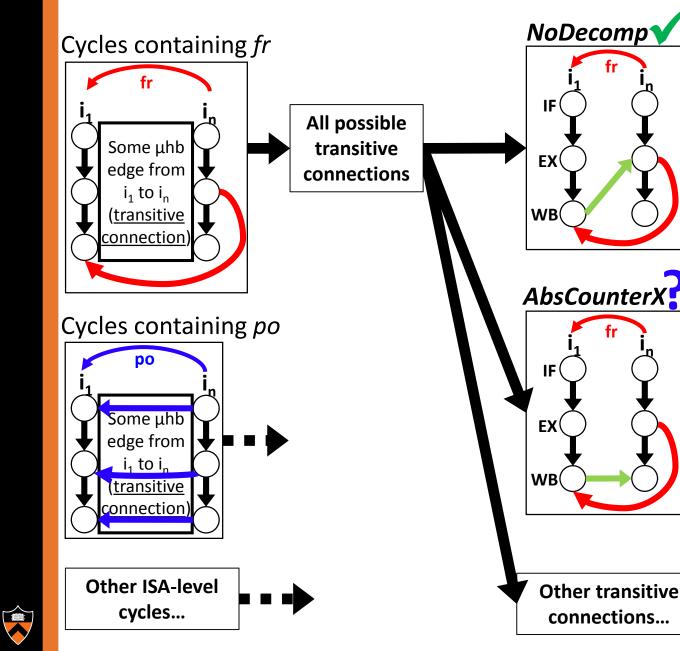


PipeProof: What's Needed

- 1. Link ISA-level MCM to microarchitectural specification
 - ISA Edge Mapping
- 2. Add universal constraints that symbolic analysis must respect
 - Theory Lemmas
- 3. A finite representation of all forbidden ISA-level cycles
 - Transitive Chain (TC) Abstraction
- 4. Automated refinement checking of the finite representation
 - Microarchitectural Correctness Proof
 - Chain invariants (for termination)

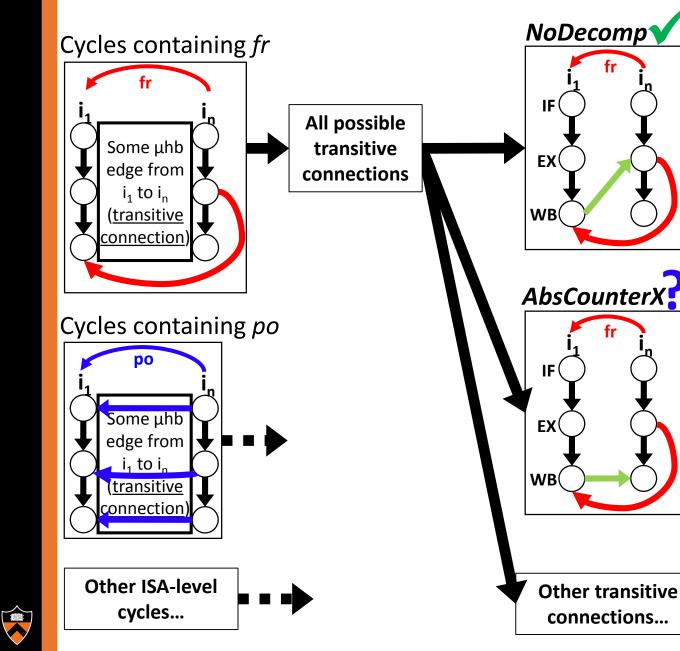






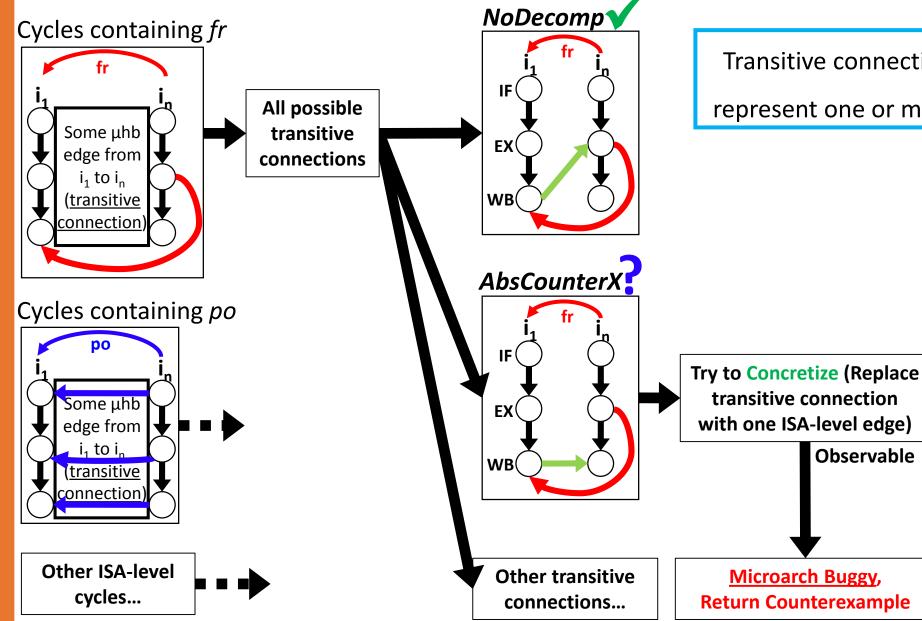
Acyclic graph with transitive connection =>

Abstract Counterexample (i.e. possible bug)



Transitive connection (green edge) may

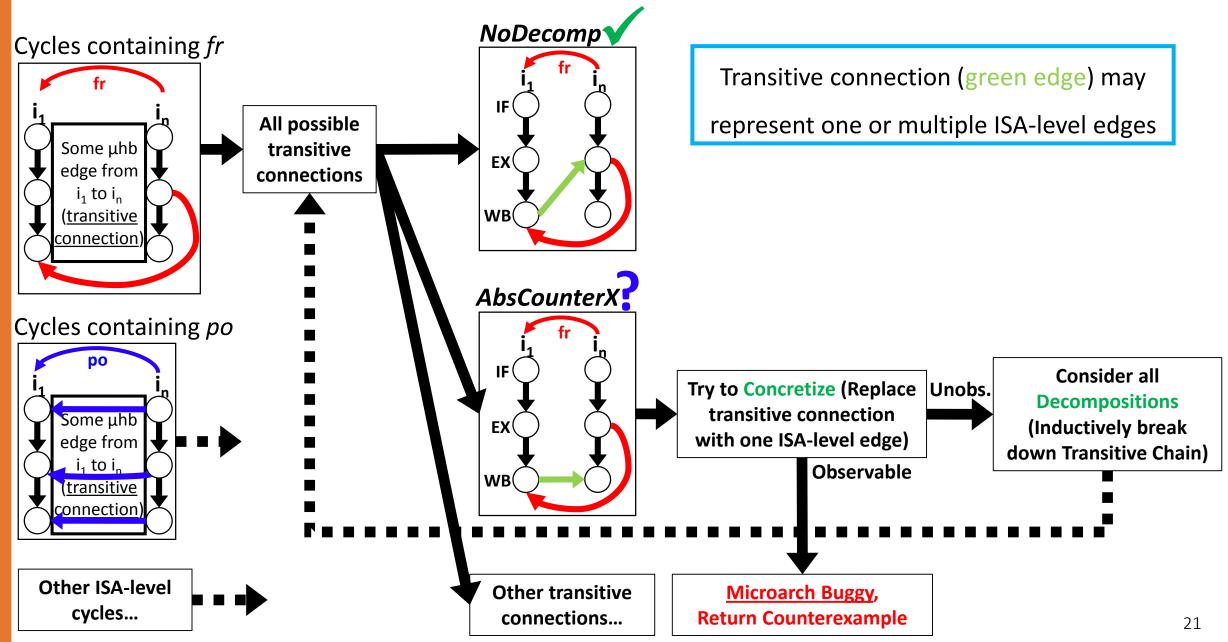
represent one or multiple ISA-level edges

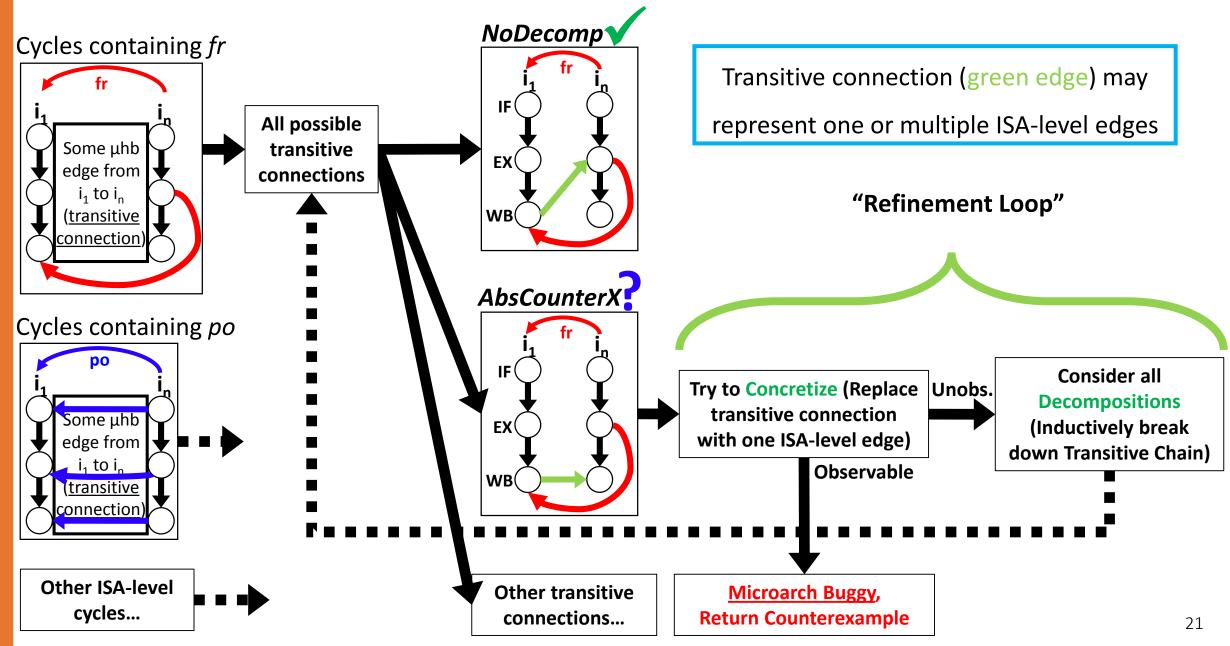


Transitive connection (green edge) may

represent one or multiple ISA-level edges

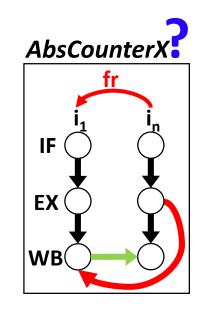
Observable





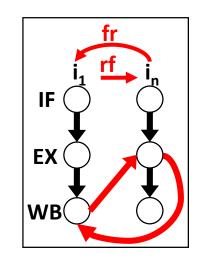
Refinement Loop: Concretization

- Replaces transitive connection with a single ISA-level edge
 - All concretizations must be unobservable
 - Observable concretizations are counterexamples (bugs)



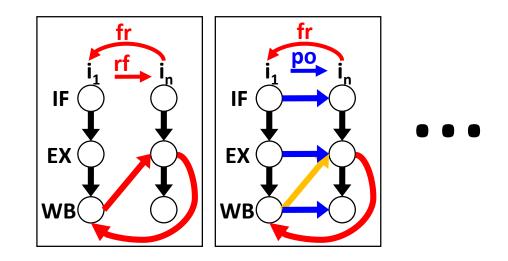
Refinement Loop: Concretization

- Replaces transitive connection with a single ISA-level edge
 - All concretizations must be unobservable
 - Observable concretizations are counterexamples (bugs)

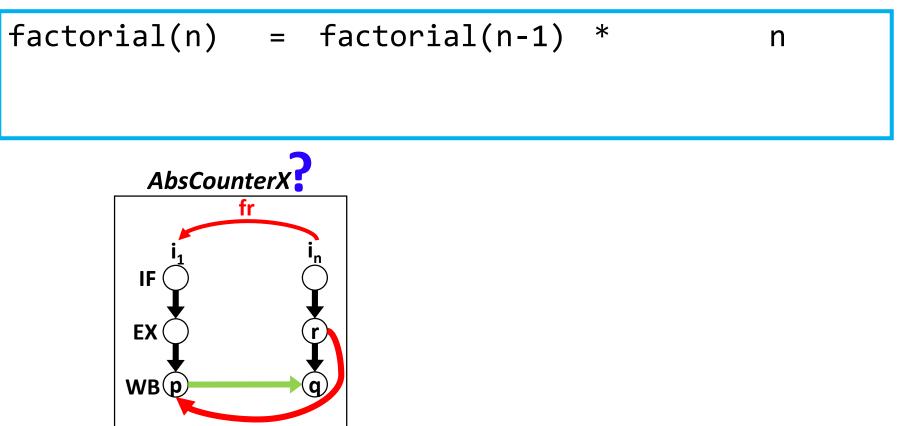


Refinement Loop: Concretization

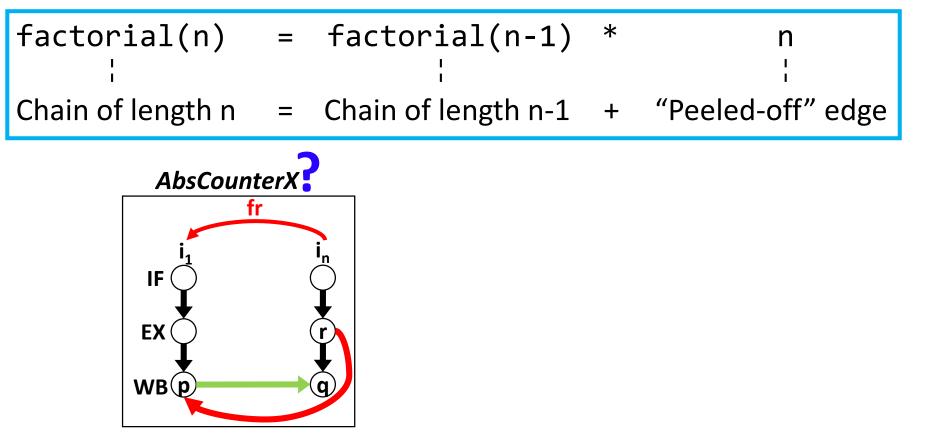
- Replaces transitive connection with a single ISA-level edge
 - All concretizations must be unobservable
 - Observable concretizations are counterexamples (bugs)



- Inductively break down transitive chain
 - Additional constraints may be enough to make execution unobservable

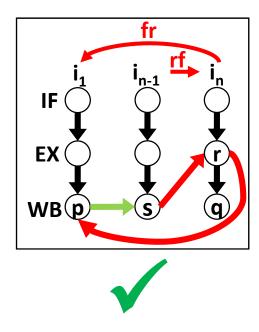


- Inductively break down transitive chain
 - Additional constraints may be enough to make execution unobservable

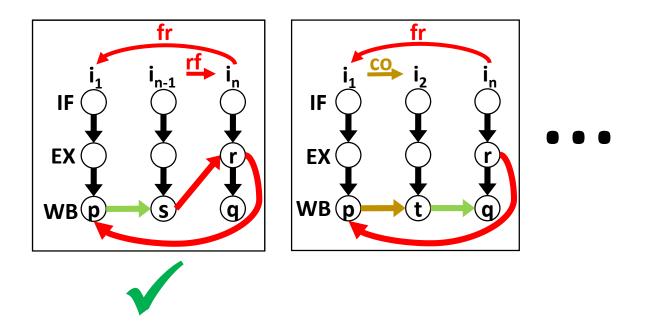


- Inductively break down transitive chain
 - Additional constraints may be enough to make execution unobservable

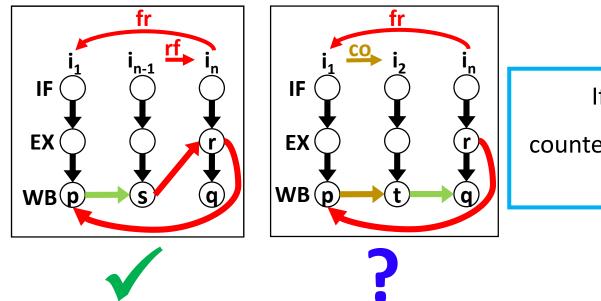
factorial(n)	=	factorial(n-1)	*	n
Chain of length n	=	Chain of length n-1	+	"Peeled-off" edge



- Inductively break down transitive chain
 - Additional constraints may be enough to make execution unobservable



- Inductively break down transitive chain
 - Additional constraints may be enough to make execution unobservable



If decomposition is abstract

counterexample, repeat concretization

and decomposition!

Hands-on: Let's Run PipeProof!

Assuming you are in ~/pipeproof_tutorial/uarches/
\$ prove_uarch -m simpleSC_fill.uarch -i SC -n

What happens?

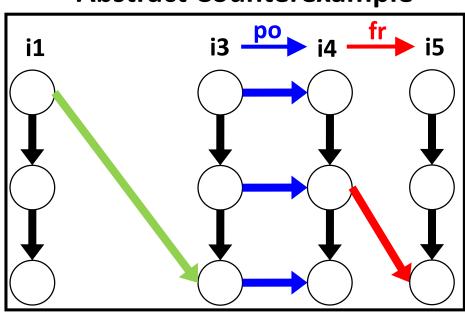
Hands-on: Let's Run PipeProof!

PipeProof does not terminate; why?

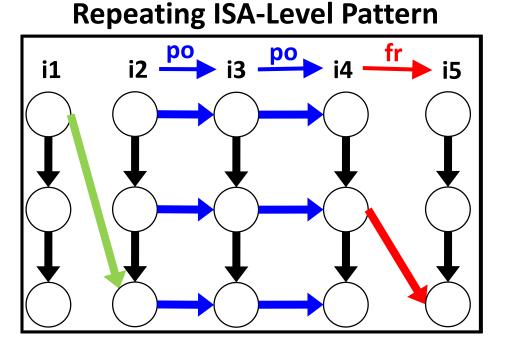
// Checking Path: (1/1, fr;)
// Checking Path: (1/1, fr;) (1/1, po;fr;)
// Checking Path: (1/1, fr;) (1/1, po;fr;) (1/1, po;po;fr;)
// Checking Path: (1/1, fr;) (1/1, po;fr;) (1/1, po;po;fr;) (1/1,
po;po;po;fr;)

• • •

- Abstractly represent repeated ISA-level patterns
- Sometimes needed for refinement loop to terminate
- Inductively proven by PipeProof before their use in proof algorithms
- Example: checking for edge from i1 to i5 (TC abstraction support proof)



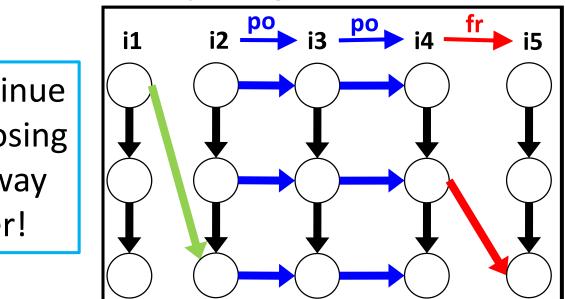
- Abstractly represent repeated ISA-level patterns
- Sometimes needed for refinement loop to terminate
- Inductively proven by PipeProof before their use in proof algorithms
- Example: checking for edge from i1 to i5 (TC abstraction support proof)



- Abstractly represent repeated ISA-level patterns
- Sometimes needed for refinement loop to terminate

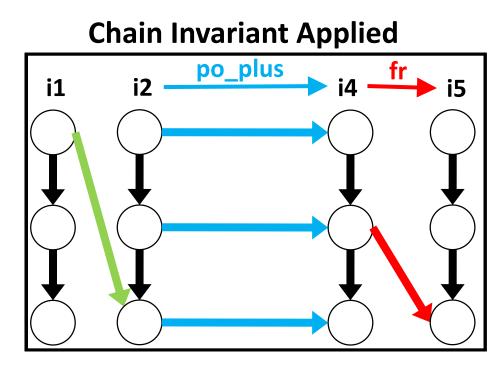
Repeating ISA-Level Pattern

- Inductively proven by PipeProof before their use in proof algorithms
- Example: checking for edge from i1 to i5 (TC abstraction support proof)



Can continue decomposing in this way forever!

- Abstractly represent repeated ISA-level patterns
- Sometimes needed for refinement loop to terminate
- Inductively proven by PipeProof before their use in proof algorithms
- Example: checking for edge from i1 to i5 (TC abstraction support proof)



-po_plus = arbitrary
number of repetitions of po
-Next edge peeled off will
be something other than po

26

Adding the Chain Invariant for po+

• Uncomment the invariant at the end of simpleSC_fill.uarch:

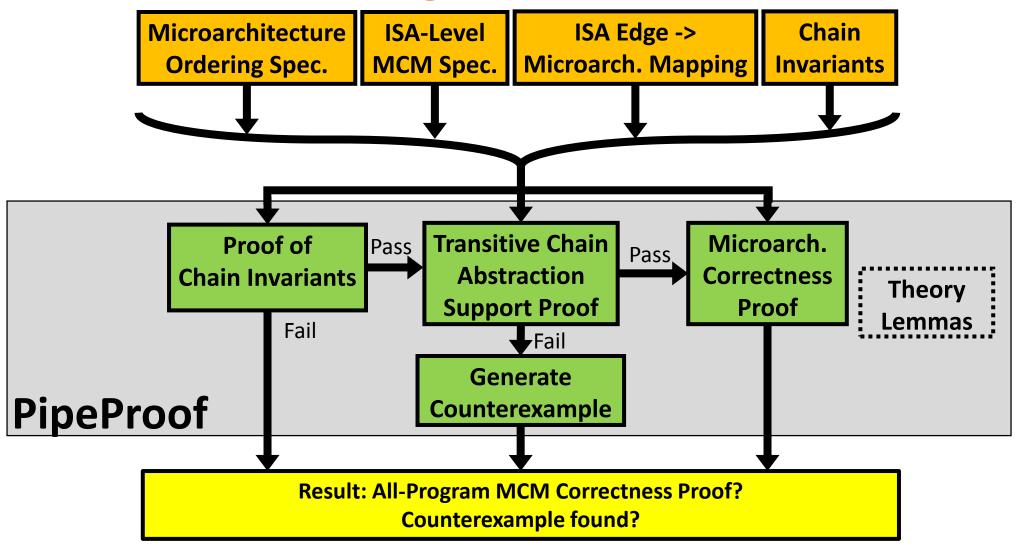
```
Axiom "Invariant_poplus":
forall microop "i",
forall microop "j",
HasDependency po_plus i j =>
  (AddEdge ((i, Fetch), (j, Fetch), "") /\ SameCore i j).
```

Now re-run PipeProof:

Assuming you are in ~/pipeproof_tutorial/uarches/
\$ prove_uarch -m simpleSC_fill.uarch -i SC

Should be proven in about a minute on the VM

PipeProof Block Diagram



PipeProof Does the Difficult Stuff for You!

- Users simply provide axioms, mappings, theory lemmas, and invariants
- PipeProof takes care of:
 - Proving TC Abstraction soundness
 - Proving any chain invariants
 - Refining abstraction (concretization and decomposition)
 - Inductively generating ISA-level cycles and covering all possibilities

Architects can use PipeProof; not just for formal methods experts!

PipeProof: TSO Case Study

Provided in VM as solutions/simpleTSO.uarch

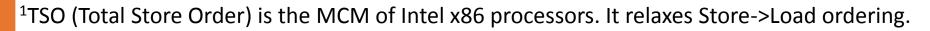
- Can try on your own time
- Requires additional ISA-level relations, theory lemmas, and chain invariants
- Will take at least 41 minutes to verify

Results

- Ran PipeProof on simpleSC (SC) and simpleTSO (TSO¹) μarches
 - 3-stage in-order pipelines
- TSO verification made feasible by optimizations
 - Explicitly checking all decompositions => case explosion
 - Covering Sets Optimization (eliminate redundant transitive connections)
 - Memoization (eliminate previously checked ISA-level cycles)

	simpleSC	simpleSC (w/ Covering Sets + Memoization)
Total Time	225.9 sec	19.1 sec

	simpleTSO	simpleTSO (w/ Covering Sets + Memoization)
Total Time	Timeout	2449.7 sec (≈ 41 mins)



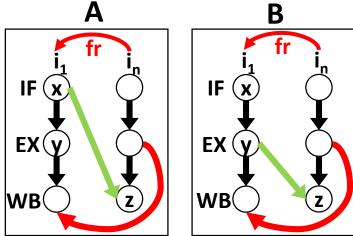
PipeProof Takeaways

- Automated All-Program Microarchitectural MCM Verification
 - Designers no longer need to choose between completeness and automation
 - Can verify microarchitectures themselves, before RTL is written!
- Based on techniques from formal methods (CEGAR) [Clarke et al. CAV 2000]
- Transitive Chain (TC) Abstraction models infinite set of executions
- Open-source: <u>https://github.com/ymanerka/pipeproof</u>
- Accolades:
 - Nominated for Best Paper at MICRO 2018
 - "Hon. Mention" from 2018 IEEE Micro Top Picks of Comp. Arch. Conferences

Backup Slides

Covering Sets Optimization

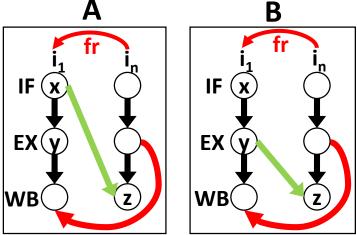
- Must verify across all possible transitive connections
- Each decomposition creates a new set of transitive connections
 - Can quickly lead to a case explosion
- The Covering Sets Optimization eliminates redundant transitive connections



Covering Sets Optimization

- Must verify across all possible transitive connections
- Each decomposition creates a new set of transitive connections
 - Can quickly lead to a case explosion
- The Covering Sets Optimization eliminates redundant transitive connections

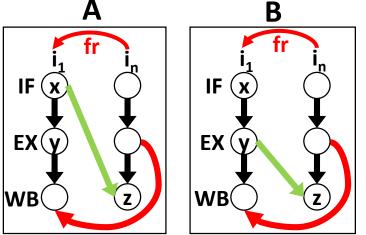
Graph A has an edge from $x \rightarrow z$ (tran conn.)



Covering Sets Optimization

- Must verify across all possible transitive connections
- Each decomposition creates a new set of transitive connections
 - Can quickly lead to a case explosion
- The Covering Sets Optimization eliminates redundant transitive connections

Graph A has an edge from x→z (tran conn.)

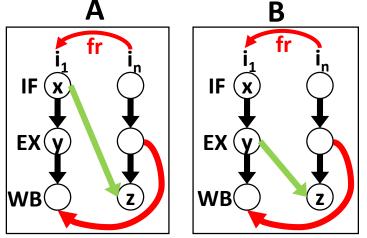


Graph B has edges from y→z (tran conn.) and x→z (by transitivity)

Covering Sets Optimization

- Must verify across all possible transitive connections
- Each decomposition creates a new set of transitive connections
 - Can quickly lead to a case explosion
- The Covering Sets Optimization eliminates redundant transitive connections

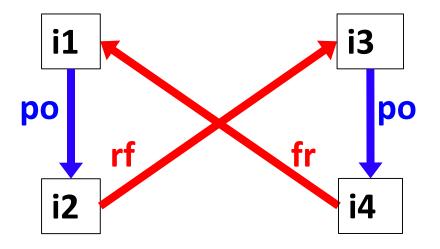
Graph A has an edge from $x \rightarrow z$ (tran conn.)



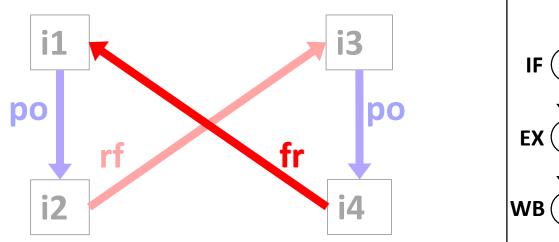
Graph B has edges from y→z (tran conn.) and x→z (by transitivity)

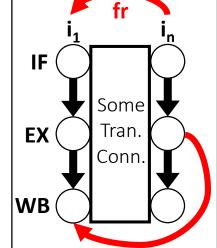
Correctness of A => Correctness of B (since B contains A's tran conn.) Checking B explicitly is redundant!

- Base PipeProof algorithm examines some cycles multiple times
- Memoization eliminates redundant checks of cycles that have already been verified

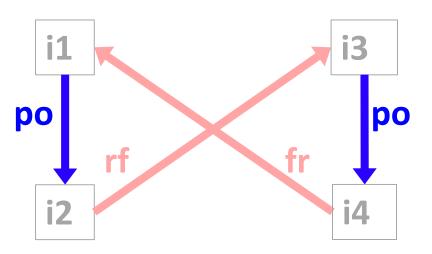


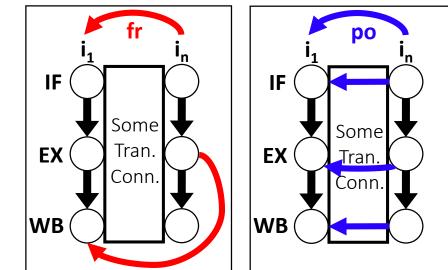
- Base PipeProof algorithm examines some cycles multiple times
- Memoization eliminates redundant checks of cycles that have already been verified





- Base PipeProof algorithm examines some cycles multiple times
- Memoization eliminates redundant checks of cycles that have already been verified

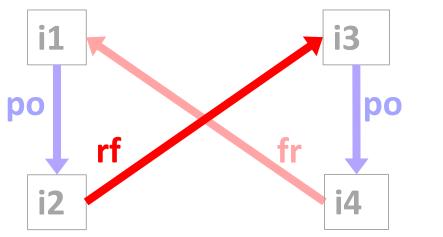




- Base PipeProof algorithm examines some cycles multiple times
- Memoization eliminates redundant checks of cycles that have already been verified

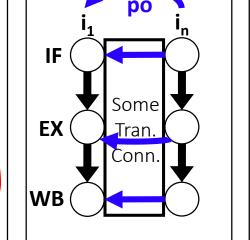
Some

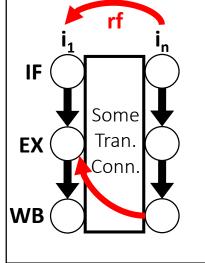
Tran.



i4

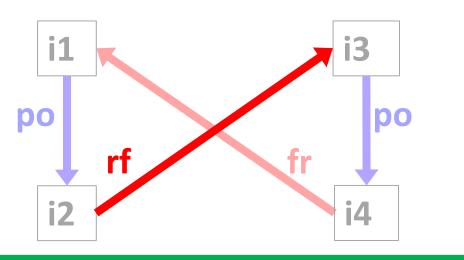
EX

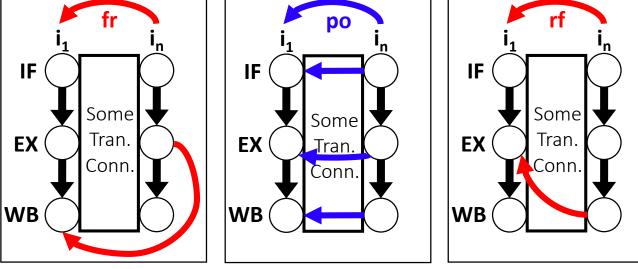




Same cycle is checked 3 times!

- Base PipeProof algorithm examines some cycles multiple times
- Memoization eliminates redundant checks of cycles that have already been verified



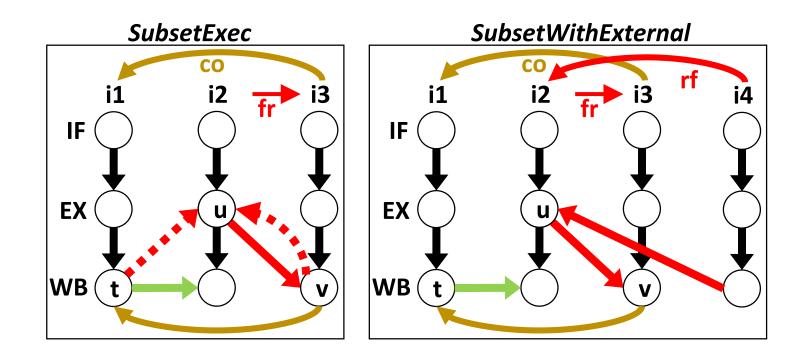


Same cycle is checked 3 times!

<u>Procedure:</u> If all ISA-level cycles containing edge r_i have been checked, do not peel off r_i edges when checking subsequent cycles

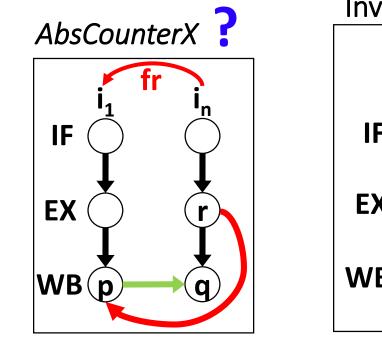
The Adequate Model Over-Approximation

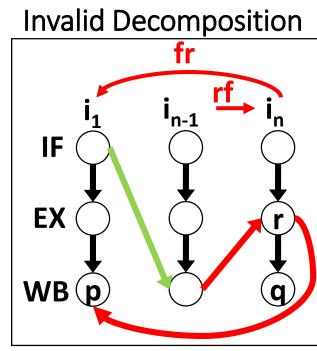
- Addition of an instruction can make unobservable execution observable!
- Need to work with over-approximation of microarchitectural constraints
- PipeProof sets all exists clauses to true as its over-approximation

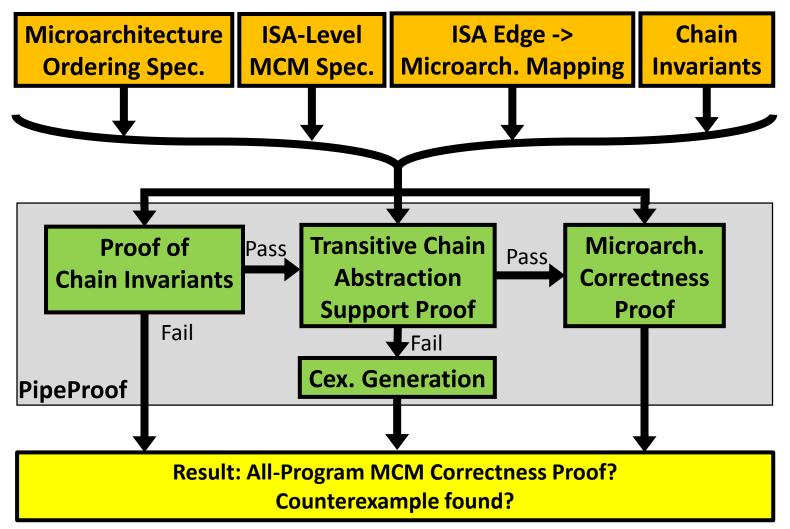


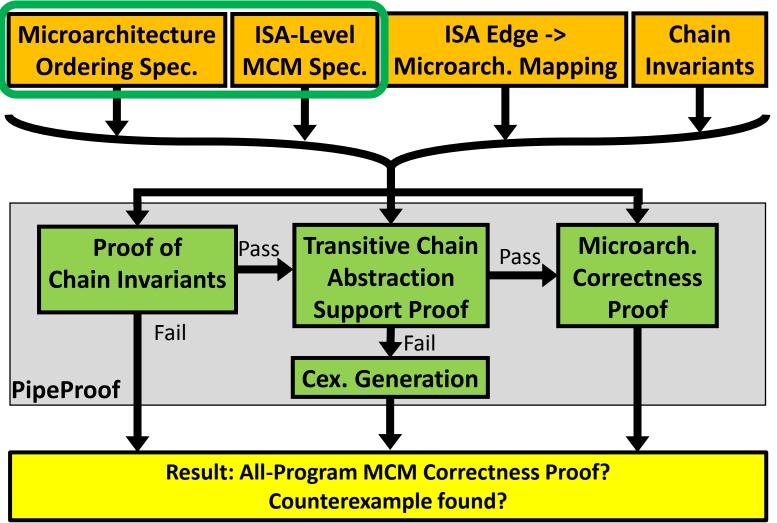
Filtering Invalid Decompositions

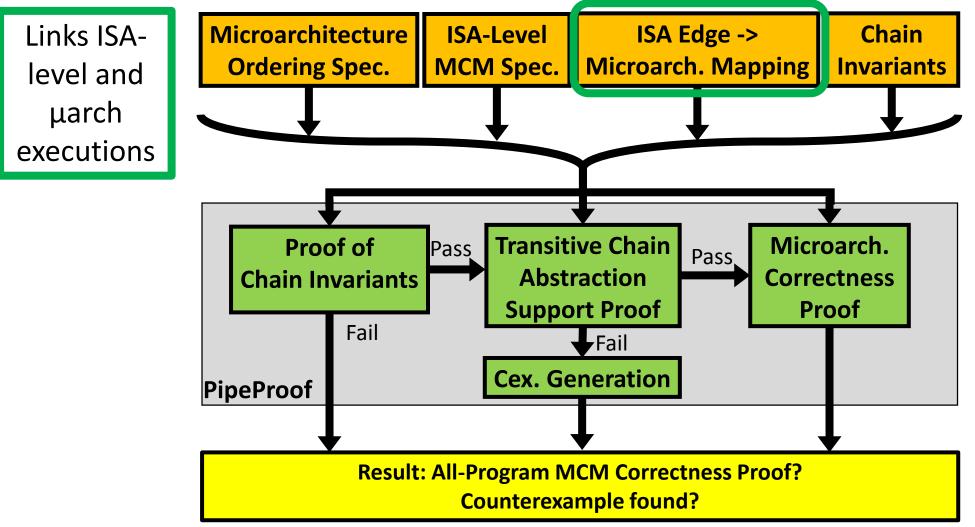
- When decomposing a transitive connection, the decomposition should guarantee the transitive connections of its parent abstract cexes.
- Decompositions that do not do this are invalid and filtered out

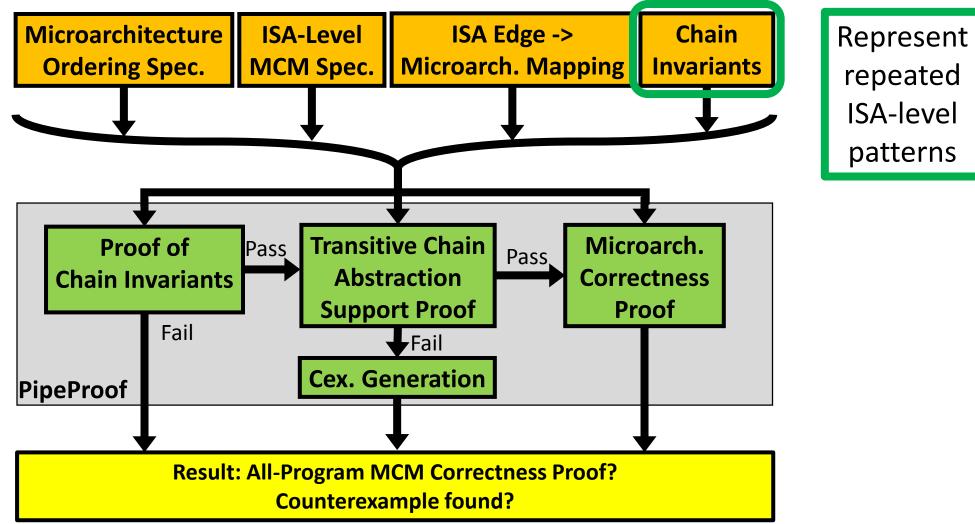


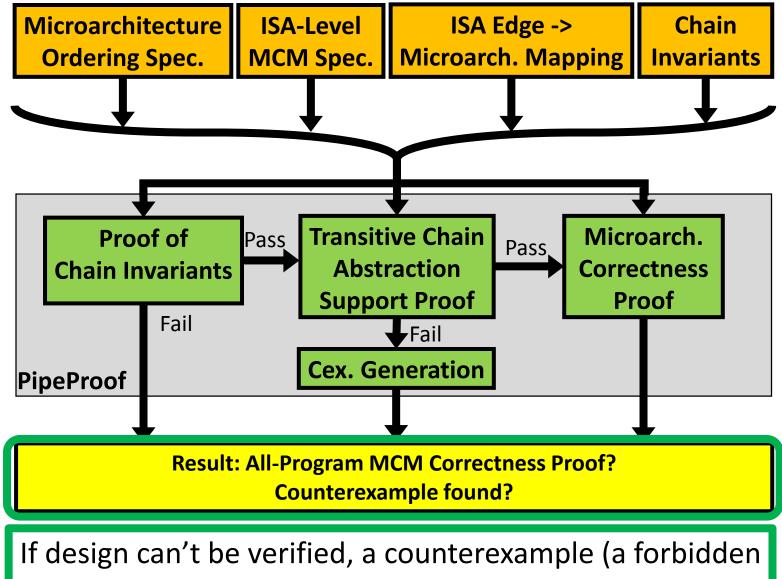












execution that is observable) is often returned

